Research highlight_simulation_round

Research Highlights: Reviews, Measurements and a Novel Virus

This post collects a diverse range of papers rated highly by peer reviewers during the editorial process. It takes in simultaneous in vivo measurements of DNA, lipid and protein creation in cells; discovery of a new virus; a systematic review of the relationship between magnesium intake and type 2 diabetes; a review of the susceptibility of premature babies to respiratory infections; and a catalytic solution to the problem of reducing CO2 production. We hope you find them a good read!

metabolites-logoAnalysis of Mammalian Cell Proliferation and Macromolecule Synthesis Using Deuterated Water and Gas Chromatography-Mass Spectrometry

Victoria C. Foletta, Michelle Palmieri, Joachim Kloehn, Shaun Mason, Stephen F. Previs, Malcolm J. McConville, Oliver M. Sieber, Clinton R. Bruce and Greg M. Kowalski

Deuterated water (2H2O), a stable isotopic tracer, provides a convenient and reliable way to label multiple cellular biomass components (macromolecules), thus permitting the calculation of their synthesis rates. Here, we have combined 2H2O labelling, GC-MS analysis and a novel cell fractionation method to extract multiple biomass components (DNA, protein and lipids) from the one biological sample, thus permitting the simultaneous measurement of DNA (cell proliferation), protein and lipid synthesis rates. We have used this approach to characterize the turnover rates and metabolism of a panel of mammalian cells in vitro (muscle C2C12 and colon cancer cell lines). Our data show that in actively-proliferating cells, biomass synthesis rates are strongly linked to the rate of cell division. Furthermore, in both proliferating and non-proliferating cells, it is the lipid pool that undergoes the most rapid turnover when compared to DNA and protein. Finally, our data in human colon cancer cell lines reveal a marked heterogeneity in the reliance on the de novo lipogenic pathway, with the cells being dependent on both ‘self-made’ and exogenously-derived fatty acid.

viruses-logoCedratvirus, a Double-Cork Structured Giant Virus, is a Distant Relative of Pithoviruses

Julien Andreani, Sarah Aherfi, Jacques Yaacoub Bou Khalil, Fabrizio Di Pinto, Idir Bitam, Didier Raoult, Philippe Colson and Bernard La Scola

Most viruses are known for the ability to cause symptomatic diseases in humans and other animals. The discovery of Acanthamoeba polyphaga mimivirus and other giant amoebal viruses revealed a considerable and previously unknown area of uncharacterized viral particles. Giant viruses have been isolated from various environmental samples collected from very distant geographic places, revealing a ubiquitous distribution. Their morphological and genomic features are fundamental elements for classifying them. Herein, we report the isolation and draft genome of Cedratvirus, a new amoebal giant virus isolated in Acanthamoeba castellanii, from an Algerian environmental sample. The viral particles are ovoid-shaped, resembling Pithovirus sibericum, but differing notably in the presence of two corks at each extremity of the virion. The draft genome of Cedratvirus—589,068 base pairs in length—is a close relative of the two previously described pithoviruses, sharing 104 and 113 genes with P. sibericum and Pithovirus massiliensis genomes, respectively. Interestingly, analysis of these viruses’ core genome reveals that only 21% of Cedratvirus genes are involved in best reciprocal hits with the two pithoviruses. Phylogeny reconstructions and comparative genomics indicate that Cedratvirus is most closely related to pithoviruses, and questions their membership in an enlarged putative Pithoviridae family.

nutrients-logoDose-Response Relationship between Dietary Magnesium Intake and Risk of Type 2 Diabetes Mellitus: A Systematic Review and Meta-Regression Analysis of Prospective Cohort Studies

Xin Fang, Hedong Han, Mei Li, Chun Liang, Zhongjie Fan, Jan Aaseth, Jia He, Scott Montgomery and Yang Cao

The epidemiological evidence for a dose-response relationship between magnesium intake and risk of type 2 diabetes mellitus (T2D) is sparse. The aim of the study was to summarize the evidence for the association of dietary magnesium intake with risk of T2D and evaluate the dose-response relationship. We conducted a systematic review and meta-analysis of prospective cohort studies that reported dietary magnesium intake and risk of incident T2D. We identified relevant studies by searching major scientific literature databases and grey literature resources from their inception to February 2016. We included cohort studies that provided risk ratios, i.e., relative risks (RRs), odds ratios (ORs) or hazard ratios (HRs), for T2D. Linear dose-response relationships were assessed using random-effects meta-regression. Potential nonlinear associations were evaluated using restricted cubic splines. A total of 25 studies met the eligibility criteria. These studies comprised 637,922 individuals including 26,828 with a T2D diagnosis. Compared with the lowest magnesium consumption group in the population, the risk of T2D was reduced by 17% across all the studies; 19% in women and 16% in men. A statistically significant linear dose-response relationship was found between incremental magnesium intake and T2D risk. After adjusting for age and body mass index, the risk of T2D incidence was reduced by 8%–13% for per 100 mg/day increment in dietary magnesium intake. There was no evidence to support a nonlinear dose-response relationship between dietary magnesium intake and T2D risk. The combined data supports a role for magnesium in reducing risk of T2D, with a statistically significant linear dose-response pattern within the reference dose range of dietary intake among Asian and US populations. The evidence from Europe and black people is limited and more prospective studies are needed for the two subgroups.

children-logoAge-Related Effect of Viral-Induced Wheezing in Severe Prematurity

Geovanny F. Perez, Amisha Jain, Bassem Kurdi, Rosemary Megalaa, Krishna Pancham, Shehlanoor Huseni, Natalia Isaza, Carlos E. Rodriguez-Martinez, Mary C. Rose, Dinesh Pillai and Gustavo Nino

Premature children are prone to severe viral respiratory infections in early life, but the age at which susceptibility peaks and disappears for each pathogen is unclear. Methods: A retrospective analysis was performed of the age distribution and clinical features of acute viral respiratory infections in full-term and premature children, aged zero to seven years. Results: The study comprised of a total of 630 hospitalizations (n = 580 children). Sixty-seven percent of these hospitalizations occurred in children born full-term (>37 weeks), 12% in preterm (32–37 weeks) and 21% in severely premature children (<32 weeks). The most common viruses identified were rhinovirus (RV; 60%) and respiratory syncytial virus (RSV; 17%). Age-distribution analysis of each virus identified that severely premature children had a higher relative frequency of RV and RSV in their first three years, relative to preterm or full-term children. Additionally, the probability of RV- or RSV-induced wheezing was higher overall in severely premature children less than three years old. Conclusions: Our results indicate that the vulnerability to viral infections in children born severely premature is more specific for RV and RSV and persists during the first three years of age. Further studies are needed to elucidate the age-dependent molecular mechanisms that underlie why premature infants develop RV- and RSV-induced wheezing in early life.

catalysts_webAn Alumina-Supported Ni-La-Based Catalyst for Producing Synthetic Natural Gas

Daniel E. Rivero-Mendoza, Jessica N. G. Stanley, Jason Scott and Kondo-François Aguey-Zinsou

LaNi5, known for its hydrogen storage capability, was adapted to the form of a metal oxide-supported (γ-Al2O3) catalyst and its performance for the Sabatier reaction assessed. The 20 wt % La-Ni/γ-Al2O3 particles were prepared via solution combustion synthesis (SCS) and exhibited good catalytic activity, achieving a CO2conversion of 75% with a high CH4 selectivity (98%) at 1 atm and 300 °C. Characteristics of the La-Ni/γ-Al2O3catalyst were identified at various stages of the catalytic process (as-prepared, activated, and post-reaction) and in-situ DRIFTS was used to probe the reaction mechanism. The as-prepared catalyst contained amorphous surface La–Ni spinels with particle sizes <6 nm. The reduction process altered the catalyst make-up where, despite the reducing conditions, Ni2+-based particles with diameters between 4 and 20 nm decorated with LaOx moieties were produced. However, the post-reaction catalyst had particle sizes of 4–9 nm and comprised metallic Ni, with the LaOx decoration reverting to a form akin to the as-prepared catalyst. DRIFTS analysis indicated that formates and adsorbed CO species were present on the catalyst surface during the reaction, implying the reaction proceeded via a H2-assisted and sequential CO2 dissociation to C and O. These were then rapidly hydrogenated into CH4 and H2O.

Posted in Children, Feature Highlights, New and Notable, Nutrients, Open Access Publishing, Peer-Review, Uncategorized, Viruses and tagged , , , , , .

Leave a Reply

Your email address will not be published. Required fields are marked *