New and Notable, 11 November 2014

The following recently published original research articles were rated very highly during the review process. Read and enjoy!

Survival of Salmonella enterica in Aerated and Nonaerated Wastewaters from Dairy Lagoons

Subbarao V. Ravva and Chester Z. Sarreal

Salmonella is the most commonly identified foodborne pathogen in produce, meat and poultry. Cattle are known reservoirs of Salmonellaand the pathogen excreted in feces ends up in manure flush lagoons. Salmonella enterica survival was monitored in wastewater from on-site holding lagoons equipped or not with circulating aerators at two dairies. All strains had poor survival rates and none proliferated in waters from aerated or settling lagoons. Populations of all three Salmonella serovars declined rapidly with decimal reduction times (D) of <2 days in aerated microcosms prepared from lagoon equipped with circulators. Populations of Salmonella decreased significantly in aerated microcosms (D = 4.2 d) compared to nonaerated waters (D = 7.4 d) and in summer (D = 3.4 d) compared to winter (D = 9.0 d). We propose holding the wastewater for sufficient decimal reduction cycles in lagoons to yield pathogen-free nutrient-rich water for crop irrigations and fertilization.

CYP24A1 Expression Inversely Correlates with Melanoma Progression: Clinic-Pathological Studies

Anna A. Brożyna, Cezary Jochymski, Zorica Janjetovic, Wojciech Jóźwicki, Robert C. Tuckey and Andrzej T. Slominski

The major role of 24-hydroxylase (CYP24A1) is to maintain 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) homeostasis. Recently, it has been discovered that CYP24A1 also catalyses the hydroxylation of 20(OH)D3, producing dihydroxy-derivatives that show very effective antitumorigenic activities. Previously we showed a negative correlation of vitamin D receptor (VDR) and CYP27B1 expression with progression, aggressiveness and overall or disease-free survivals of skin melanomas. Therefore, we analyzed CYP24A1 expression in relation to clinicopathomorphological features of nevi, skin melanomas and metastases. In melanocytic tumors, the level of CYP24A1 was higher than in the normal epidermis. The statistically highest mean CYP24A1 level was found in nevi and early stage melanomas. With melanoma progression, CYP24A1 levels decreased and in advanced stages were comparable to the normal epidermis and metastases. Furthermore, the CYP24A1 expression positively correlated with VDR and CYP27B1, and negatively correlated with mitotic activity. Lower CYP24A1 levels correlated with the presence of ulceration, necrosis, nodular type and amelanotic phenotypes. Moreover, a lack of detectable CYP24A1 expression was related to shorter overall and disease-free survival. In conclusion, the local vitamin D endocrine system affects melanoma behavior and an elevated level of CYP24A1 appears to have an important impact on the formation of melanocytic nevi and melanomagenesis, or progression, at early stages of tumor development.

Photocatalytic Solar Tower Reactor for the Elimination of a Low Concentration of VOCs

Nobuaki Negishi and Taizo Sano

We developed a photocatalytic solar tower reactor for the elimination of low concentrations of volatile organic compounds (VOCs) typically emitted from small industrial establishments. The photocatalytic system can be installed in a narrow space, as the reactor is cylindrical-shaped. The photocatalytic reactor was placed vertically in the center of a cylindrical scattering mirror, and this vertical reactor was irradiated with scattered sunlight generated by the scattering mirror. About 5 ppm toluene vapor, used as representative VOC, was continuously photodegraded and converted to CO2 almost stoichiometrically under sunny conditions. Toluene removal depended only on the intensity of sunlight. The performance of the solar tower reactor did not decrease with half a year of operation, and the average toluene removal was 36% within this period.

Genotyping-By-Sequencing for Plant Genetic Diversity Analysis: A Lab Guide for SNP Genotyping

Gregory W. Peterson, Yibo Dong, Carolee Horbach and Yong-Bi Fu

Genotyping-by-sequencing (GBS) has recently emerged as a promising genomic approach for exploring plant genetic diversity on a genome-wide scale. However, many uncertainties and challenges remain in the application of GBS, particularly in non-model species. Here, we present a GBS protocol we developed and use for plant genetic diversity analysis. It uses two restriction enzymes to reduce genome complexity, applies Illumina multiplexing indexes for barcoding and has a custom bioinformatics pipeline for genotyping. This genetic diversity-focused GBS (gd-GBS) protocol can serve as an easy-to-follow lab guide to assist a researcher through every step of a GBS application with five main components: sample preparation, library assembly, sequencing, SNP calling and diversity analysis. Specifically, in this presentation, we provide a brief overview of the GBS approach, describe the gd-GBS procedures, illustrate it with an application to analyze genetic diversity in 20 flax (Linum usitatissimumL.) accessions and discuss related issues in GBS application. Following these lab bench procedures and using the custom bioinformatics pipeline, one could generate genome-wide SNP genotype data for a conventional genetic diversity analysis of a non-model plant species.