Research highlight_simulation_round

Research Highlights: The Vaccarès Lagoon System, Environmental Noise Levels and Car Crashes

It’s time for our first 2016 selection of papers rated highly by our reviewers. We hope you enjoy the read:

water-logoAn Unstructured Numerical Model to Study Wind-Driven Circulation Patterns in a Managed Coastal Mediterranean Wetland: The Vaccarès Lagoon System

Olivier Boutron *, Olivier Bertrand, Annie Fiandrino, Patrick Höhener, Alain Sandoz, Yves Chérain, Eric Coulet and Philippe Chauvelon

The spatiotemporal structure of wind-driven circulation patterns and associated water exchanges can drive important bio-hydrodynamic interactions in shallow lagoons. The Vaccarès lagoon system is a complex shallow hydrosystem located in the central part of the Rhône Delta (France). It is internationally recognized as part of a biosphere reserve within the framework of UNESCO’s Man and Biosphere Programme, and as a RAMSAR site. Due to its frequent occurrence in this area, and considering the shallowness of the Vaccarès lagoon system, wind is assumed to play a major role in the hydrodynamic and biological processes. In this study, a hydrodynamic model was developed to investigate the structure of wind-driven circulations in the Vaccarès lagoon system, to provide insights into their role in transport and water exchange processes. The implementation and assessment (calibration and validation) of the model is presented first. Simulations were then performed for two typical steady wind conditions and for one measured unsteady wind event. The results illustrate the influence of the complex geometry of the Vaccarès lagoon system on the wind-driven circulations, and the differences observed between the different sub-lagoons in this system. The differences in wind-induced water exchanges between these sub-lagoons are also discussed.


ijerph-logoAnnoyance from Road Traffic, Trains, Airplanes and from Total Environmental Noise Levels

Martina S. Ragettli, Sophie Goudreau, Céline Plante, Stéphane Perron, Michel Fournier and Audrey Smargiassi *

There is a lack of studies assessing the exposure-response relationship between transportation noise and annoyance in North America. Our aims were to investigate the prevalence of noise annoyance induced by road traffic, trains and airplanes in relation to distance to transportation noise sources, and to total environmental noise levels in Montreal, Canada; annoyance was assessed as noise-induced disturbance. A telephone-based survey among 4336 persons aged >18 years was conducted. Exposure to total environmental noise (A-weighted outdoor noise levels—LAeq24h and day-evening-night equivalent noise levels—Lden) for each study participant was determined using a statistical noise model (land use regression—LUR) that is based on actual outdoor noise measurements. The proportion of the population annoyed by road traffic, airplane and train noise was 20.1%, 13.0% and 6.1%, respectively. As the distance to major roads, railways and the Montreal International Airport increased, the percentage of people disturbed and highly disturbed due to the corresponding traffic noise significantly decreased. When applying the statistical noise model we found a relationship between noise levels and disturbance from road traffic and total environmental noise, with Prevalence Proportion Ratios (PPR) for highly disturbed people of 1.10 (95% CI: 1.07–1.13) and 1.04 (1.02–1.06) per 1 dB(A) Lden, respectively. Our study provides the first comprehensive information on the relationship between transportation noise levels and disturbance in a Canadian city. LUR models are still in development and further studies on transportation noise induced annoyance are consequently needed, especially for sources other than road traffic.


pathogens-logoSubversion of Host Innate Immunity by Uropathogenic Escherichia coli

Patrick D. Olson and David A. Hunstad *

Uropathogenic Escherichia coli (UPEC) cause the majority of community-onset urinary tract infections (UTI) and represent a major etiologic agent of healthcare-associated UTI. Introduction of UPEC into the mammalian urinary tract evokes a well-described inflammatory response, comprising pro-inflammatory cytokines and chemokines as well as cellular elements (neutrophils and macrophages). In human UTI, this inflammatory response contributes to symptomatology and provides means for diagnosis by standard clinical testing. Early in acute cystitis, as demonstrated in murine models, UPEC gains access to an intracellular niche that protects a population of replicating bacteria from arriving phagocytes. To ensure the establishment of this protected niche, UPEC employ multiple strategies to attenuate and delay the initiation of host inflammatory components, including epithelial secretion of chemoattractants. Recent work has also revealed novel mechanisms by which UPEC blunts neutrophil migration across infected uroepithelium. Taken together, these attributes distinguish UPEC from commensal and nonpathogenic E. coli strains. This review highlights the unique immune evasion and suppression strategies of this bacterial pathogen and offers directions for further study; molecular understanding of these mechanisms will inform the development of adjunctive, anti-virulence therapeutics for UTI.


ijgi-logoWeather Conditions, Weather Information and Car Crashes

Adriaan Perrels *, Athanasios Votsis, Väinö Nurmi and Karoliina Pilli-Sihvola

Road traffic safety is the result of a complex interaction of factors, and causes behind road vehicle crashes require different measures to reduce their impacts. This study assesses how strongly the variation in daily winter crash rates associates with weather conditions in Finland. This is done by illustrating trends and spatiotemporal variation in the crash rates, by showing how a GIS application can evidence the association between temporary rises in regional crash rates and the occurrence of bad weather, and with a regression model on crash rate sensitivity to adverse weather conditions. The analysis indicates that a base rate of crashes depending on non-weather factors exists, and some combinations of extreme weather conditions are able to substantially push up crash rates on days with bad weather. Some spatial causation factors, such as variation of geophysical characteristics causing systematic differences in the distributions of weather variables, exist. Yet, even in winter, non-spatial factors are normally more significant. GIS data can support optimal deployment of rescue services and enhance in-depth quantitative analysis by helping to identify the most appropriate spatial and temporal resolutions. However, the supportive role of GIS should not be inferred as existence of highly significant spatial causation.

Posted in Feature Highlights, IJERPH, Journals, New and Notable, Pathogens, Reviews, Uncategorized, Water and tagged , , , , , .

Leave a Reply

Your email address will not be published. Required fields are marked *